Source code for bandwitch.ClonesObservations.BandsObservation

from collections import OrderedDict
from bandwagon.ladders import ladder_from_aati_fa_calibration_table
from bandwagon import BandsPattern
from .band_patterns_discrepancy import band_patterns_discrepancy

try:
    from plateo.parsers import plate_from_aati_fragment_analyzer_zip

    PLATEO_AVAILABLE = True
except ImportError:
    PLATEO_AVAILABLE = False


[docs]class BandsObservation: """One observation of a bands pattern. Parameters ---------- name Name of the observation (used for the top label in plots) bands A BandPattern object ladder A BandPattern object representing a ladder. migration_image Optional RGB array (HxWx3) representing the gel "image" (which will be displayed on the side of the plot). """ def __init__(self, name, bands, ladder, migration_image=None): """Initialize.""" self.name = name self.bands = sorted(bands) self.ladder = ladder self.migration_image = migration_image
[docs] @staticmethod def from_aati_fa_archive( archive_path, min_rfu_size_ratio=0.3, ignore_bands_under=None, direction="column", ): """Return a dictionnary of all band observations in AATI output files. Parameters ---------- archive_path A path to a ZIP file containing all files output by the AATI fragment analyzer. min_rfu_size_ratio Cut-off ratio to filter-out bands whose intensity is below some threshold. The higher the value, the more bands will be filtered out. Returns ------- A dictionary ``{'A1': BandsObservation(), 'A2': ...}`` containing the measured pattern information for a whole 96-well microplate. """ if not PLATEO_AVAILABLE: raise ImportError("Plateo must be installed to parse AATI zips.") ignore_bands_under = ignore_bands_under or 0 plate = plate_from_aati_fragment_analyzer_zip(archive_path) ladder_data = plate.data.ladder ladder = ladder_from_aati_fa_calibration_table(dataframe=ladder_data) # get the set of constructs sorted by order of columnwise appearance: def band_is_strong_enough(band): """Return True iff the band's intensity is above the set level.""" return 1.0 * band["RFU"] / band["Size (bp)"] > min_rfu_size_ratio return OrderedDict( [ ( well.name, BandsObservation( name=well.name, ladder=ladder, bands=[ band["Size (bp)"] for band in well.data.bands.values() if band_is_strong_enough(band) and (band["Size (bp)"] > ignore_bands_under) ], migration_image=well.data.migration_image, ), ) for well in plate.iter_wells(direction=direction) ] )
[docs] def patterns_discrepancy( self, other_bands, relative_tolerance=0.1, min_band_cutoff=None, max_band_cutoff=None, ): """Return the maximal discrepancy between two band patterns. The discrepancy is defined as the largest distance between a band in one pattern and the closest band in the other pattern. Parameters ---------- other_bands A list of bands (integers) to be compared with the current bands relative_tolerance Tolerance, as a ratio of the full ladder span. If =0.1, then the discrepancy will have a value of 1 when a band's nearest correspondent in the other pattern is more that 10% of the ladder span apart. min_band_cutoff Discrepancies involving at least one band below this minimal band size will be ignored. By default, it will be set to the smallest band size in the ladder. max_band_cutoff Discrepancies involving at least one band above this minimal band size will be ignored. By default, it will be set to the smallest band size in the ladder. """ ladder_min, ladder_max = self.ladder.dna_size_span # print (min_band_cutoff) if min_band_cutoff is None: min_band_cutoff = ladder_min if max_band_cutoff is None: max_band_cutoff = ladder_max return band_patterns_discrepancy( other_bands, self.bands, ladder=self.ladder, relative_tolerance=relative_tolerance, zone=[min_band_cutoff, max_band_cutoff], reference_and_gel=True, )
[docs] def to_bandwagon_bandpattern(self, background_color=None, label="auto"): """Return a pattern version for the plotting library Bandwagon. If label is left to 'auto', it will be the pattern's name. """ if label == "auto": label = self.name return BandsPattern( self.bands, corner_note="Total: %d bp." % sum(self.bands), ladder=self.ladder, label=label, gel_image=self.migration_image, background_color=background_color, )