Source code for goldenhinges.biotools

import itertools as itt
from copy import deepcopy
from functools import lru_cache
import numpy as np
from Bio.SeqFeature import FeatureLocation, SeqFeature
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio import SeqIO

try:
    # Biopython <1.78
    from Bio.Alphabet import DNAAlphabet

    has_dna_alphabet = True
except ImportError:
    # Biopython >=1.78
    has_dna_alphabet = False


complements = {"A": "T", "T": "A", "C": "G", "G": "C"}


[docs]def reverse_complement(sequence): """Return the reverse-complement of the DNA sequence. For instance ``complement("ATGC")`` returns ``"GCAT"``. The sequence must be an ATGC string. """ return "".join([complements[c] for c in sequence[::-1]])
@lru_cache(maxsize=4096) def memo_reverse_complement(sequence): return reverse_complement(sequence)
[docs]def gc_content(sequence): """Return the proportion of G and C in the sequence (between 0 and 1). The sequence must be an ATGC string. """ return 1.0 * len([c for c in sequence if c in "GC"]) / len(sequence)
# def sequences_differences(seq1, seq2): # """Return the number of different basepairs between sequences ``seq1`` # and ``seq2`` (which must be ATGC strings) # """ # return len([c1 for c1, c2 in zip(seq1, seq2) if c1 != c2])
[docs]def sequences_differences_array(seq1, seq2): """Return an array [0, 0, 1, 0, ...] with 1s for sequence differences. seq1, seq2 should both be ATGC strings. """ if len(seq1) != len(seq2): raise ValueError( "Only use on same-size sequences (%d, %d)" % (len(seq1), len(seq2)) ) arr1 = np.fromstring(seq1, dtype="uint8") arr2 = np.fromstring(seq2, dtype="uint8") return arr1 != arr2
[docs]def sequences_differences(seq1, seq2): """Return the number of nucleotides that differ in the two sequences. seq1, seq2 should be strings of DNA sequences e.g. "ATGCTGTGC" """ return int(sequences_differences_array(seq1, seq2).sum())
[docs]def list_overhangs(overhang_size=4, filters=()): """Return the list of all possible ATGC overhangs of the given size, such that ``fl(overhang)`` is true for every function ``fl`` in ``filters``. """ return [ "".join(overhang) for overhang in itt.product(*overhang_size * ("ATGC",)) if all((fl(overhang) for fl in filters)) ]
[docs]def crop_record(record, crop_start, crop_end, features_suffix=" (part)"): """Return the cropped record with possibly cropped features. Note that this differs from ``record[start:end]`` in that in the latter expression, cropped features are discarded. Parameters ---------- record A Biopython record crop_start, crop_end Start and end of the segment to be cropped. features_suffix All cropped features will have their label appended with this suffix. """ features = [] for feature in record.features: start, end = sorted([feature.location.start, feature.location.end]) new_start, new_end = max(start, crop_start), min(end, crop_end) if new_end <= new_start: continue new_start, new_end = new_start - crop_start, new_end - crop_start feature = deepcopy(feature) feature.location = FeatureLocation(new_start, new_end, feature.location.strand) label = "".join(feature.qualifiers.get("label", "")) feature.qualifiers["label"] = label + features_suffix features.append(feature) new_record = record[crop_start:crop_end] new_record.features = features return new_record
[docs]def sequences_differences_segments(seq1, seq2): """Return the list of segments on which sequence seq1 differs from seq2. The list is of the form [(start1, end1), (start2, end2), etc.] Parameters ---------- seq1, seq2 ATGC sequences to be compared """ arr1 = np.fromstring(seq1, dtype="uint8") arr2 = np.fromstring(seq2, dtype="uint8") arr = 1 * (arr1 != arr2) diffs = np.diff([0] + list(arr) + [0]).nonzero()[0] half = int(len(diffs) / 2) return [(diffs[2 * i], diffs[2 * i + 1]) for i in range(half)]
[docs]def annotate_record( seqrecord, location="full", feature_type="misc_feature", margin=0, **qualifiers ): """Add a feature to a Biopython SeqRecord. Parameters ---------- seqrecord The biopython seqrecord to be annotated. location Either (start, end) or (start, end, strand). (strand defaults to +1) feature_type The type associated with the feature margin Number of extra bases added on each side of the given location. qualifiers Dictionnary that will be the Biopython feature's `qualifiers` attribute. """ if location == "full": location = (margin, len(seqrecord) - margin) strand = location[2] if len(location) == 3 else 1 seqrecord.features.append( SeqFeature( FeatureLocation(location[0], location[1], strand), qualifiers=qualifiers, type=feature_type, ) )
def sequence_to_biopython_record( sequence, id="<unknown id>", name="<unknown name>", features=() ): if has_dna_alphabet: # Biopython <1.78 sequence = Seq(sequence, alphabet=DNAAlphabet()) else: sequence = Seq(sequence) seqrecord = SeqRecord(sequence, id=id, name=name, features=list(features),) seqrecord.annotations["molecule_type"] = "DNA" return seqrecord
[docs]def load_record(filename, linear=True, name="unnamed", fmt="auto"): """Load a FASTA/Genbank/... record""" if fmt != "auto": record = SeqIO.read(filename, fmt) elif filename.lower().endswith(("gb", "gbk")): record = SeqIO.read(filename, "genbank") elif filename.lower().endswith(("fa", "fasta")): record = SeqIO.read(filename, "fasta") else: raise ValueError("Unknown format for file: %s" % filename) record.linear = linear if name != "unnamed": record.id = name record.name = name.replace(" ", "_")[:20] return record